

*
 Corresponding author: Matt@Pallaver.com

Industrial Feedback on Implementing Functional Decomposition
Design Processes for Reliability and Functional Safety

Matt Pallaver1*, Ahed Qaddoura2, Sung-hee Do, Ph.D.3

1ZD-TRW, Livonia, MI 48150 USA
2Schlumberger, Sugar Land, TX 77498 USA
3Lexington, MA 02420 USA

Abstract. The value of Axiomatic Design functional decomposition as a design analysis point tool has been

widely reported. This paper reports on the implementation of functional decomposition design processes as

a system design tool on 23 industrial projects over a 5 year period with product development teams ranging

from 6 to 35 engineers. The products developed were systems of systems with mechanical, electrical,

firmware, software, and operational interface elements. Functional decompositions ranged from about 200

to 1600 Functional Requirements. A number of these projects are now in commercial production. This

paper reviews the process definition and implementation process steps that evolved from these experiences.

The paper then reports on the implementation lessons learned and the value propositions noted.

Conclusions and recommendations are made. The experiences demonstrated that functional requirement

decomposition processes aid in achieving on-time, on-cost and on-specification project development targets.

The authors propose this paper summarizes the “Endgame” design process impact that axiomatic design can

reasonably expect in industry design practices for system development.

1 Introduction and Overview

We applied Axiomatic Design (AD) processes to
concept phase design of software, hardware, electronics
and systems of systems. The complete process was
referred to as Functional Decomposition analysis. This
paper first summarizes the current working process and
then discusses lessons learned.

Prior reported applications of AD have established
a value of the process as a point tool for the analysis of
specific design problems. We are not aware of
discussions of large scale applications of AD to system
design in industrial design settings.

The implemented process is much larger in scope
than traditional AD methods. The matured process
presented is based on an AD decomposition backbone.
We refer to the process descriptively as a Functional
Requirements and Decomposition process producing
concept phase Function Models for subsequent analysis
and design iteration. We use the FR-DP and zig-zag
decomposition terms of AD methods.
 Not intended as academic research, this paper
assumes a general knowledge of the AD definition of
Customer Needs (CNs), Functional Requirements (FRs),
Design Parameters (DPs), Process Variables (PVs),
Design Matrices, axiom 1 and axiom 2 as well as zigzag
decomposition between the FR and DP domains. Terms

that are defined in the Key Terms of Appendix 1 are
capitalized in this text.

From 2011 to 2017 Functional Requirements
analysis, Functional Decomposition processes and
analysis of the resulting Function Maps were introduced
to 23+ projects. Primarily, the projects involved products
developed to perform a variety of functions within oil
and gas down-hole exploration. Example functions
include pressure sampling, liquid sampling, rock
formation sampling, moving and manipulating down-
hole process components and making measurements
with various sensors of the down-hole rock formations.
The products were typically processor controlled
systems communicating with the surface and controlling
hydraulics, motors, sensors and other active components.
The environment is harsh being highly corrosive, having
temperatures often in excess of 150 C (300 F) and up to
30,000 psi hydrostatic pressure.
 Design teams were composed of trained engineers
often at master and PhD levels from some of the finest
schools in the world with typically 5 years prior design
experience.
 The primary need driving us to propose changes to
design processes was improvement of functional
reliability and safety of the products.

2 Implementation Issues

The methods we used evolved considerably over the
period of use as we responded to implementation issues.
Most process evolution was in the area of integrating
Decomposition into other key functions of the
company’s concept phase processes. Areas of
implementation evolution included:

• Definition of Terms
• Stakeholder requirements analysis
• Contractual requirement obligations
• Constraints management
• Product risk assessment
• Functional performance (reliability) risk analysis
• Prior product lessons learned and historic failure
modes
• Design verification plans
• End to end traceability
• Fitting functional decomposition into the design
V model and Process Assessment Models (PAMs)

2.1 Conflict with Aesthetic Design

We note that Functional Analysis applies to the
performance aspect of product. It does not easily apply
to design for consumer perception of aesthetics or
goodness. Often aesthetic design will dominate the
design equation of a successful product.
 We further note that Functional Analysis and good
functional design is often at odds with aesthetic design.
For example, a functional requirement for a reasonable
cell phone powered life (perhaps DP = Battery Capacity)
conflicts with the aesthetic requirement for a visually
slim package.

2.2 Conflict with Success

The authors’ experience is there is not a strong
correlation between good functional design and product
success in many markets.
 In part this is because Customers are generally
incapable of judging good functional performance or
fitness for use and their purchase decisions are more
often driven by aesthetics, advertising or celebrity
promotion of the product.
 As a result the measure of good design and design
processes in industry is defined largely by the
subsequent product business success.
 Thus, it is important to note in implementing a
functional performance based design approach that the
primary resistance to change in a successful company
will be unsophisticated management who are afraid of
changing underlying process ‘recipes’ and that will not
see a connection between better functional design and
business success.

3 Definition of important terms

Our design projects are often composed of
internationally dispersed development teams. For all
development projects, to minimize the risk of
introducing communication based design and process
errors, a common and unambiguous vocabulary is
essential and the importance of having good working
definitions cannot be overstated. See Appendix 1 for
definitions of key terms of our Functional
Decomposition and related analysis processes.

4 Summary of current working process

The current operational process is presented graphically
in Appendix 2. The Functional Decomposition process
passes through the following steps:

1. Process initiated by release of Contractual
Requirements
2. Stakeholders Needs Assessment.
3. Requirements analysis.
4. Development of Operational Requirements and
Input Constraints.
5. Functional Decomposition of Operational
Requirements.
6. Systematic Product Risk assessment.
7. Validation of Input Requirements against the
Function Map.

These process steps are discussed in turn.

4.1 Contractual Requirements document

Our overall design process starts with a Contractual
Requirements document. A Contractual Requirements
document is common industry practice. This document
defines the contractual requirements between the
development funding source and the development
organization. This will typically contain a marketing
needs analysis and business justification. The
Contractual Requirements define, as detailed as possible
considering that the design has not started, the
development requirements to deliver on the business
justification. In our Functional Decomposition process,
this document is a significant source of many business
needs.

4.2 Stakeholder Needs Assessment

Stakeholder Needs assessment is composed of
determining stakeholders and collecting Stakeholder
Needs. This phase has three tasks.

4.2.1 Determine Stakeholders

Stakeholder categories and potential contacts need to be
developed. Stakeholder is a broad term which includes
traditional people roles, regulatory agencies, interfaces
with other systems and significant physical domain
constraints. The assessment of whom or what is a
stakeholder is driven by the question “With what or
whom will our design need to interact during its
complete product life cycle from creation to disposal?”
The output of this task is a list of stakeholder categories,

with specific named stakeholders to be contacted when
appropriate, with contact information and assignments of
the staff responsible for each category.

4.2.2 Eliciting (human) Stakeholder Needs

The systematic contact and solicitation of stakeholder
needs from persons is a qualitative research project, and
all the rules of good research apply. Perform data
gathering in waves of contacts. Between waves, during
processing of prior wave research, adjust questionnaires
and methods, and test for data saturation. Stop assessing
within a stakeholder category when saturated (no new
information is being gained by further research). The
primary goal is to assess and reach data saturation within
all stakeholder categories.

4.2.3 Collecting other Stakeholder Needs

There exist other ‘stakeholder’ needs. These include, for
example, internal standards, regulatory authorities and
interfaces. These need to be researched and documented.
Generally these will convert to Input Constraints.

The outputs of the Stakeholder Needs collection tasks
are stakeholder statements of need, organized by
Stakeholder.

4.3 Requirements Analysis

To analyse the Stakeholder needs statements collected
from people we first use K-J analysis [1] to categorize
the stakeholder needs into Affinity Lists. Then a single
step Quality Function Deployment (QFD) [2] House of
Quality (HOQ) is used as a process to develop functional
objectives to satisfy the customer needs affinity lists. We
use stakeholder pairwise comparison ranking [3] of QFD
input needs (typically in the form of Affinity Lists). The
outputs of this HOQ task are lists of independent Critical
to Quality functional statements with targets and
prioritization. These statements are in the words of the
analysts, traceable back through the QFD and KJ
Analysis to the stakeholder statements of need.
 Another key Requirements Analysis step is to
analyze the Contractual Requirements. Specific product
design performance needs from this document must be
identified and extracted. The output of this process step
is either a separate requirements document summarizing
product needs of the Contractual Requirements, or a
summary of which paragraphs are product needs, if the
document is suitably structured, that are binding on the
product design.
 In virtually all companies, there are a series of
controlling documents representing various
organizational requirements applying to new designs.
These will document standard needs for things like
supply chain, manufacturing and good design practices.
All of these documents need to be researched and
included as requirement documents that apply to the
current design. These requirements almost universally
become Input Constraints and do not affect the

Operational Requirements. If structured appropriately,
these requirement documents can be appended directly
to the Input Constraints document.
 Separate from Stakeholders, but significant in
establishing functional performance requirements, is an
analysis of any prior product history. This is research on
potential problems, issues and failure modes of current
or past similar products. This is generally a research
task of manufacturing and field records. Information
discovered will often overlap with needs identified by
Stakeholders. This research is reviewed and analyzed to
define additional needs to resolve historic issues. The
output of this process step is a list of addition needs
traced back to the relevant research findings.

4.4 Development of Operational Requirements
and Input Constraints

Operational Requirements are the system performance
functions that must be met to deliver the required
business value. These are not a complete set of
requirements. Rather they are the complete set of top
level Functional Requirements. These are controlled by
the design team. These requirements should be viewed
as a design response to the required functionality of the
Contractual Requirements. This requirement list is
developed specifically to drive Functional
Decomposition.
 Because Contractual Requirements documents in
our experience are universally incomplete assessments of
Stakeholder Needs, it is necessary to both conduct
Stakeholder Needs analysis and examine this analysis
along with the Contractual Requirements in crafting the
Operational Requirements.
 Operational Requirements come out of inspection
and discussion of the Stakeholder’s Needs analysis and
the Contractual Requirements. This is not a
deterministic process and will typically take weeks of
work.

Operational Requirements determine important
metrics like delivery times, project and product costs.
Often, assumptions of cost versus technology
performance trade-offs may be required in developing
the Operational Requirements. There is a design process
tendency to want to start engineering design to verify
and de-risk these trade-off assumptions before finalizing
Operational Requirements. We found it more useful to
carry these trade-off risks through to completion of the
Operational Requirements and a reasonable first pass
Functional Decomposition. Often we found initial
proposals on solutions don’t survive the relatively quick
Functional Decomposition phase. Thus we avoid
spending expensive engineering time analysis of trade-
offs that wouldn’t survive Functional Decomposition.
However, verifying these assumptions which carry
significant risk should be the first engineering tasks of
the design phase.

Operational Requirements are continually subject
to revision, particularly during the early design phase as
risks are either confirmed or mitigated resulting in
conceptual design iterations.

 Contractual Requirements or Stakeholder Needs
that were determined to be Constraints and not functions
are separated from the Operational Requirements and
tracked as Input Constraints.

4.5 Functional Decomposition

Functional decomposition proceeds from the Operational
Requirements. If there are N Operational Requirements,
then there would be potentially N level one
decomposition branches. In practice, not all branches
are equal and often we would drop a few if insignificant
or risk free.
 We defined the Decomposition Node to contain:
• A unique ID to identify the node
• A title description of the FR
• A target FR Performance Measure with tolerances
• A title description of the DP
• A definition of the DP verification test
• An assessment of DP risk
 We taught designers to read decomposition, when
considering the child FRs of the parent FR-DP
Decomposition Node, as “The minimum set of
independent child FRs required to enable the parent DP
to satisfy the parent FR.” FRs are to be solution neutral.
 We taught Axiom 1, one DP for each FR, and
explained the independence requirement for the DPs.
 DPs need to be checked to insure they do not
violate any of the constraints of the Input or Derived
Constraint lists. The DP verification test, to be used to
demonstrate that the DP delivered on the FR, is defined.

In the early phases of decomposition, the DP test
needs only to be defined sufficiently such that reasonable
staff can agree on its definition. These tests will become
more elaborate test specifications written during the
design phase.
 If the selection of a DP creates a binding constraint
on the balance of the design process, the DP is added to
the Derived Constraints list.
 Completion of all node information is not required
initially. We would start with FRs and DPs, perhaps
defining the balance of the Decomposition Node
information to create clarity if the FR-DP text was not
clear. Once FR-DP Decomposition Trees are hashed
out, and design starts to feel stable, then a more
systematic completion should be done.
 Trade studies, when needed, to determine DP
selection would be documented, released and then noted
on the decomposition node comments.

4.6 Systematic Product Risk Assessment

Risk assessment is presented as a question in the
decomposition process at the Decomposition Node level,
“How might the DP fail to satisfy the FR?” Risk tracking
is implemented using an FMEA format. FMEA actions
to mitigate risks resulting in one or more of the
following options:

• Acceptance of the risk

• Scheduling of an engineering test during
development to assess the design margins of the
risk
• Mitigation of the risk by addition of child FRs to
address the risk
• Changing of the DP to mitigate the risk.
Systematic risk assessment is a substantial axiom 2

value-add to engineering concept phase development
processes. In a 1000 FR decomposition, we can easily
add 100 FRs responding to DP risk mitigation
opportunities. There will also be easily 200 engineering
tests scheduled to evaluate DP performance risk during
the engineering development phase. Most of these
design phase engineering tests are assessing design
margins.

4.7 Verification of Input requirements

When the Functional Decomposition is substantially
completed, a quality process of Stakeholder Needs and
Requirements verification begins.

Each of the Input Requirements documents, which
are composed of the Contractual Requirements, crucial
Stakeholder Needs, Prior Product History and Other
Design Process Standard documents are systematically
reviewed. For each identified need of these documents,
the corresponding FR in the Decomposition Tree is
identified, and the need traced to the FR.

This full traceability of selected Stakeholder
Needs, affinity lists, and other input needs to FR-DP
nodes to verification tests is an excellent quality tool to
insure completeness of the proposed design. It also
supports the management of thousands of system FRs
that need to be implemented during the design phase.
 If a corresponding FR is not found, then this
‘Orphan’ need is analyzed and a determination is made
on its validity. If the Function Tree is at fault for
missing a corresponding requirement, then the FR-DP
Decomposition is refactored to include a corresponding
FR and the trace link made. Often we find the need was
not justified, and we would note this by linking the need
to an explanatory summary document of unmet needs.

Politically, important stakeholders, customer and
contractual needs were explicitly examined and if not
met, more often than not, the Decomposition was revised
even if the need was not justified by decomposition.
 At this point, a design review is held on the
Function Tree as a condition of a full release to begin the
design work.

With release, design tasks are scheduled to reflect a
priority of work on high risk portions of the design and
logical dependencies.
 Generally we maintained the Functional
Decomposition during the early design phases to track
and update the testing plans and track the overall design
risk. As the design progresses onto engineering and
manufacturing documentation control systems, and the
work transitions from planned work to fire fighting, we
found little value in maintaining the Functional
Decomposition as it could not capture or contribute to

the myriad of details and issues of later stage
development.

5.0 Process Findings and Lessons Learned

Findings and lessons learned deploying a working
industrial functional decomposition process are
presented in statements grouped in two sections,
Deployment Process and Value proposition. These are
presented individually in the general order of the process
steps. The findings are contrasted to the general design
and development experiences of the authors, not any
specific processes of any one organization. The authors
share more than 50 years of development experience in
software, hardware and manufacturing across more than
a dozen organizations.

5.1 Deployment Process Findings

We found that classroom teaching of Functional
Decomposition is noteworthy for its ineffectiveness.
Then how can we teach the process? We learned what is
effective is to require that functional decomposition
sessions take place facilitated by staff skilled in the
process. People learn by doing.
 We learned our toolkits needed to be updated to
manage process updates. The Acclaro™ Toolkit [4] was
revised to manage the following process issues:

 Management of Aggregate Constraints
 Management of Decomposition Node functional

risk.
 Management of the engineering design testing

plans (tests, status, traceability)
 Development of an FTA calculation for the

Decomposition Tree
 Management of traditional Contractual

Requirements and similar documents with full
traceability into the Functional Decomposition

 Reporting of design risk mitigation status
Even the best design methods fail when applied to

the wrong requirements. Garbage in, garbage out
(GIGO) is an expression summarizing how flawed, or
nonsense inputs produce nonsense outputs or "garbage"
design. In both the spirit and practicality of
implementing a Functional Decomposition design
process, a design team needs to step up one level above
the current design to analyse and understand the driving
Functional Performance objectives. Otherwise
Functional Decomposition is potentially producing better
performing decoupled “Garbage” designs.

In the AD process, with the creation of the
Operation Requirements document, our AD vocabulary
changes from Needs to Requirements. However, we
retained the use of Requirements in early document
names, such as the Contractual Requirements, to simply
avoid confusion with traditional practice.
 We found it is not possible to separate the
processes of requirements analysis from concept
synthesis. This is primarily because higher level design
decisions create lower level requirements that need
further design analysis. Historically, organizations often

chose to separate the requirements phase from
engineering development, putting the requirements
analysis function primarily in Marketing and assuming
the Contractual Requirements represented 100% of the
requirements analysis. In fact, Contractual
Requirements are only a minor percentage of the
requirements work remaining to be done for a good
systems engineering effort. And the requirements work
can only be completed in the presence of design analysis
and trade decisions.
 Additionally, we learned that marketing
department driven Contractual Requirement statements
are remarkably poor in defining functional requirements.
In our experiences we noted that marketing driven
requirements consist largely of features to catch up with
the competition, marketing’s view of new features they
perceive customers want to buy, marketing’s view of
solutions to existing problems of current product and
overly optimistic reliability and cost targets needed for
management buy-in of the development budget. The
majority of actual requirements, functional or otherwise,
are assumed, and not explicitly defined.

We discovered, as discussed in section 2.2 Conflict
with Success, working with business and marketing to
change the requirement analysis paradigm is hard. The
conversations would go like this:

Marketing: “I don’t understand what you want;
Just design the features we need.”

Design: “We are looking at the problem from a
system point of view and need to develop
measures of functional performance for the
entire system to best understand how to
define the needed engineering performance
requirements.”

Marketing: “I have already suggested the solution
you should use. If you find something better,
fine, but I think you are making this too
complicated.”

Design: “Can we chat with some of our customers
to understand better their objective measures
of performance of our product.”

Marketing: “I respect what you are trying to do,
but there is not enough time. We are not
going to bother our customers. We are not
going to redesign the product. I have given
you a budget and defined what we need to
do, so now let’s get going…”

Even with historic first pass design yields being virtually
zero, and not a single project delivering as initially
scheduled, it was near impossible to change marketing
behaviour, particularly if the company has been
financially successful.

Furthermore, we have developed the opinion that it
is not even useful to try and educate marketing and sales
staff on the skills of requirements analysis. We feel that
the most reasonable solution is to place functional
requirements analysis processes in the engineering
development team. The contribution of marketing
should properly be considered the marketing needs input,
certainly important, but simply one of many
stakeholders.

 We found early on that stakeholder needs and
Contractual Requirements were insufficient to drive the
Functional Decomposition. This drove the creation of the
Operational Requirements document (discussed in detail
later). Then how do we view the Contractual
Requirements and other stakeholder needs? First, these
are key inputs in the generation of Operational
Requirements. Second, when completed, the Function
Map is used to verify that stakeholder needs, Contractual
Requirements as well as other input needs are met.
 We found that there is a major difference between
our Functional Decomposition and historic design
processes. In the past, a development team would
consider a marketing produced requirements document
as the driving design document. With Functional
Decomposition we introduce and design to the
Operational Requirements and we merely verify against
the more traditional Stakeholder Needs driven
documents. With our Functional Decomposition
approach we found many Stakeholder Needs were
dismissed as irrelevant or even counterproductive to
delivering on top level performance requirements. In
prior design processes these needs would have been
incorporated in the design. The magnitude of this
difference cannot be overstated. It is a paradigm change.
Bottom up “perceived” Stakeholder Needs design is
driven by stakeholder experience. And when technology
and business needs are changing rapidly, stakeholder
experience is more often a handicap than an asset in
defining and developing new solutions.
 We learned that determining the Operational
Requirements have proven to be a most difficult aspect.
Stakeholders reliably fail to provide insight into the
objective top level functions of the product under
development. Instead, stakeholders discuss their needs
from a framework of their experiences with current and
prior solutions. From a Functional Decomposition
process point of view, to determine the Operational
Requirements, we had to invariably return to the
business and marketing staff to figure out and define the
development needs that had to be accomplished in the
customer function space. Yet Business and Marketing
staff, certain in their opinion of the required solution
features, would battle their perceived waste of time to try
and define what the solution actually needed to do.

We learned we needed Project Management,
Design and Business Analysis skills and participation to
complete the Operational Requirements and the
subsequent upper level Functional Decomposition.
 We found that all applications of Functional
Decomposition need Operational Requirements. These
are the AD top level functions. The text of Operational
Requirements needs to be extensive to capture the
performance requirements of a system. These are often
statements with multiple paragraphs to define intent, and
not simple single statement FRs that are common in
axiomatic design papers.
 We learned a technique to coach the development
of Operational Requirements. Typically these
requirements are key performance metrics of product
cost, maintenance cost, reliability, and competitive
performance functionality. To help staff envisage what

top level functions are, we developed the term “Black
Box” requirements. We tell staff to imagine they have
multiple potential solutions for the marketing and
business case requirements, all in black boxes. Staff is
not allowed to see the solutions. To determine which of
these solutions is best, staff can only ask questions or
have the results of tests run on these solutions. What
questions and tests would we ask to determine which of
the black boxes has the best solution to achieve our
business objectives? These questions and tests will
correspond to key Operational Requirements.
 We found that Functional Decomposition
processes enable systematic risk assessment much earlier
in the development process than any other process we
had knowledge of. In our experience, previous
systematic risk reduction processes were composed of
table top reviews, design reviews, FMEAs and testing.
Most of these traditional risk processes, by their very
nature, were later stage exercises around design solution
documentation. A Functional Decomposition tree
enables a systematic risk review process during the
concept phase around FR-DP nodes long before
significant design effort has been invested.
 We have found that experienced senior designers
are often a handicap and a resistance to process change.
The typical argument made by experienced staff against
active participation is that this new process is clearly not
required as proven by their personal past success.
Functional Decomposition work is just introducing
needless documentation and project delays. We found
the only way to deal with this resistance is with +3 level
management support. Without such support we would
often observe that designers quickly generated their
design, documentation and prototypes without
systematic risk assessment or design margin analysis or
verification to input stakeholder needs. Then, when the
incompleteness of the design was established, usually
during prototype evaluation, designs were patched,
functionality dropped or problems ignored to stay on
schedule. The +2 management, often bonus compensated
by delivery schedule dates, readily permits delivery of
substandard and incomplete product.
 We learned, or rather concluded, there are two
forms of relevant experience, environmental experience
and solution experience. Environmental experience
refers to understanding of the environment that the final
solution under development needs to function in. This is
very valuable, particularly in risk assessment processes.
Solution experience refers to an understanding of how
the design problem was solved in the past. Knowing
prior solutions seemed to limit the ability of a team to
identify or accept new superior solutions. Often their
reasoning is that proven prior designs had less risk. Yet
most staff would admit many new product problems
came from past ‘proven in use’ designs failing under
new conditions.
 We found that defining good FRs was not difficult
if a test driven approach is used. Historically, in AD
literature, much is made of vocabulary and structure of
forming FR statements. The better defined the FR
statement was, the easier to understand the FR to derive
the testing to demonstrate the FR is met by the DP. It is

much easier to skip the vocabulary exercise and just
define the test.

We found that we needed six informational
elements in an FR-DP node. These were 1) the FR, 2)
the DP, 3) the FR measure and tolerance, 4) the
definition of the test used to demonstrate the DP delivers
on the FR measure within the tolerance range, 5) a DP
risk assessment and 6) a unique FR-DP node identifier.
This unique node identifier is not the node numbering
system, which will be constantly changing for a give FR-
DP pair during Functional Decomposition. As previously
discussed, defining the DP verification test and the FR
test measurement objective with tolerances effectively
backward defines the FR as a function.
 We learned a culture of understanding and
practicing stakeholder needs analysis is important.
Design teams in the concept phase need a business
analysis focus with an understanding of the customer
needs. In one project, a three month Stakeholders Needs
assessment and Requirements Analysis uncovered that 7
of the 8 most important functional needs were absent
from the Contractual Requirements. We theorize the
reason for these kinds of gaps between true customer
needs and the existing Contractual Requirements comes
from a marketing culture of dependence on experience,
re-use of prior solutions and a healthy dose of process
laziness.
 We discovered the formal source of customer
needs, marketing, would know the current product
problems we needed to fix, wish list features that
customers had requested, and the features that
competition had that we didn’t. Marketing and
development staff usually did not have a minimal
understanding of how the system is used functionally by
the customer, or other stakeholders, to meet their internal
needs. Functional Decomposition processes reveal these
information gaps and forces design engineering into the
stakeholder needs analysis process to properly drive
Functional Decomposition.
 We found the DPs of the upper levels of
decompositions are more “subsystem” placeholders than
actual solutions (that can be linked to PVs). For
example, we have an FR to slow down. The Target
Measure might be a deceleration rate with tolerances.
The DP acceptance test would be defined. The DP
proposed could be “4 independent regenerative braking
subsystems from 10mpg to max velocity, friction
braking below effective regenerative braking, and
friction braking supplement for emergency braking
requests.” This is a subsystem definition with
performance decisions, but not having a detailed
technical definition.
 We found that Design Parameters (DPs) and
Process Variables (PVs) do not feel like distinctly
separate domains in our industrial applications. Rather,
these are endpoints on an engineering development
continuum. In a traditional AD representation of the
design domains, initial conceptual solutions are proposed
as a DP. Detailed product development work converts
the DP to PVs. We found the proposed DP can often be
defined directly as a final PV with no further
development work required. Or other times the DP

decision is just the beginning conceptualization of a
multi-step process of development of PV solution during
the implementation phase of the design V-model.
Development and definition of DPs into PVs represents
the bulk of the design effort. In summary we found that:
1. The PV domain didn’t have much systematic value

in the concept phase. In part, defining and
completing the PV domain represents the bulk of the
project design work, not the concept work.

2. PV concepts are often not relevant at the higher
decomposition levels, where DPs represent more
often architectural system and subsystem structures.

3. Practically, during the concept phase, the “PV
domain” represented real world constraints on the
implementation of selected DPs and contained the
knowledge required to complete trade studies
between alternative DPs. So a designer would
“Visit the PV domain” to study the implementation
risks of alternative DPs.

4. There was not a hierarchical zig-zag process
between the DP and PV domains. We propose that
DP-PV zig-zagging is a misconception in many
axiomatic design writings. Instead the linking, if
any exists, is one to one or many to one DP to PV
(component or process) traceability. We still
assume independence of PVs.

5. In the case of specific manufacturing process
designs that might justify a zig-zag functional
decomposition defining process decisions to
implement a DP, we would re-purpose the FR and
DP domains in a separate decomposition.
We have found we have virtually no new (from

scratch) designs. Most industry design efforts are fixing
or updating existing, highly constrained solutions. In
part, we feel this is a self-imposed situation as we see
many projects try to conserve or reuse “proven” designs
from a perception that this practice minimizes
development risk. We note that re-use creates coupling,
so there is an inherent conflict between industry practice
and axiomatic design independence goals.

We found that re-used solutions should be
introduced as a DP in the Functional Decomposition. A
characteristic of re-use is that typically, particularly with
software, numerous independent FRs are all met by this
DP ‘block of code.’ In such a case we would view the
re-use risk as extremely high and systematically require
design phase testing against the entire set of FRs
serviced by the re-use DP.
 We found over time that we should only apply
Functional Decomposition when there was a structured
Requirements Analysis effort. Early on in our efforts,
design teams had a garbage-in garbage-out issue in that
their requirements are poor, resulting in constant
discovery of missed needs (requirements) during the
project. This changing of requirements is typically
referred to as “Requirements Creep” and explained by
project staff as management’s tendency to ask for more
and more as the project goes on. We dispute this
argument from our experiences. Our observations are
that requirement creep is a direct consequence of poor
requirements analysis. Requirements are not changing
so much as they are being discovered late in the project.

As changing requirements blow the value proposition of
any design process out of the water, we feel there is little
advantage to introducing new design processes when not
practicing rigorous requirements analysis. Functional
Decomposition efforts fall flat as they reveal and try to
deal with missed, poorly defined or incomplete
requirements. Most of the toolkit functionality
developed during our efforts was in the area of
integrating needs analysis into the Functional
Decomposition process.
 We found that a traditional axiom 2 explanation of
design versus process range analysis was not helpful.
Axiom 2 conceptually represents an assessment of the
systematic risk that the DP will (will not) deliver within
the tolerances of the FR Measure. Axiom 2 does not
seem to address random risks. The traditional academic
textbook Axiom 2 representations feel simply like six-
sigma based manufacturing process risk analysis. Instead
we choose to use traditional risk assessment concepts to
implement Axiom 2 and do not introduce the concept
itself. We teach, using conventional reliability theory,
that each FR-DP node needs an assessment of the
systematic and random risk failure modes that might
prevent the DP from delivering on the FR. How risk
assessment is implemented varies between technical
domains. Software risk assessment, for example, is
different than hardware risk assessment. Traditional risk
tools will apply. We implemented an FMEA format to
capture these risks and their mitigations with our
software toolkit.
 We realized after a few projects that Function
Maps were valuable largely in the early design and
planning stages of a project. However, as the project
progressed into the detailed engineering phase, and
development staff started reacting to problems with
testing and prototypes, Function Maps had decreasing
value in design phase problem solving efforts. As such,
once the major engineering effort began, we would
effectively stop maintaining the Functional
Decomposition unless there was a specific area of
interest or perhaps a limited redesign effort.

5.2 Value Proposition Findings

We have found the following value propositions
applying Function Decomposition process to system
design and development as a concept phase process:

Thinking clearly in terms of solution neutral functional
requirements rather than traditional features and
solutions results in:

 Better requirements definition and clarity resulting
in less project risk related to misunderstood,
missing or creeping requirements

Function Maps enable excellent requirements and
concept phase solution visualization resulting in:

 Increased collaboration and problem identification
earlier in the development process which
minimizes wasted time on substandard
solutions and reduces design iterations.

 More complete hierarchical requirements definition
that minimizes lower level design iterations due
to unclear and un-reviewed subsystem
requirements.

Driving the design top down from Operation
Requirements and then verifying the solution against the
input requirements results in:

 Functionally leaner designs simplifying the
solution and lowering project and product costs

Functional Decomposition enables systematic Product
Risk performance analysis structured by functions,
resulting in:

 Better performance (less systematic and random
risks) as significantly more performance risks
are uncovered then testing could ever find.

 Better project delivery and cost metrics as more
performance problems are discovered and dealt
with systematically in the design phase, rather
than appearing unplanned in test or deployment
phases of the project.

We note that many AD proponents claim better design
through design matrix analysis and decoupling, as an
argument for process adoption. We did not observe this
value proposition.

We found little overall value of systematic design
matrix assessment in our industrial experience and
dropped design matrix analysis from our process.
Without prejudice as to this value in certain specific
situations, why did we not see any value? In part,
analyzing and maintaining a design matrix for systems of
500+ FRs that are constantly changing during the
concept and early design phase is an intractable problem.
Also, mentally practicing axiom 1 during design
decomposition along with FR-DP test definition
produces largely uncoupled design. Also, design matrix
assessment is not reliable as systems evaluated as
uncoupled during the concept phase end up being
coupled anyway. Also, coupled systems pass the
required tests and perform reliably. Finally, we find the
level of competitive functional design so poor that
designs are commercially competitive merely with
sufficient functionality, not the optimal functionality of a
fully decoupled design, making delivery, cost, feature set
and other factors more important to achieving business
goals.
 The authors feel strongly that business strategy,
process or software designs are more fertile ground than
hardware design for applying Functional Decomposition
processes. Yet typically staff in these areas is much less
receptive to applying design process tools to their
decision making. Management in particular, in our
experience, resists these concepts. Convincing
management that their business or operational strategies
should be ‘designed’ and risk assessed is an incredibly
difficult task.

6 Conclusions, Discussion and
Recommendations

We found in our development projects that the value
proposition of introducing Functional Decomposition
processes was an increased first pass yield of designs
better fit to deliver the Operational Requirements with
increased functional reliability. This would also
significantly reduce project costs and delays over the
prior process(es).
 We conclude, from our personal experiences and
observations, Functional Decomposition processes
applied during the concept phase and early design phase
provide two primary underlying benefits to create this
value proposition:
 First, Functional Decomposition produces a more
complete, internally consistent and mature set of system
requirements verified against Contractual Requirements,
Stakeholder Needs and other input requirements. This
minimizes traditional requirements creep. This avoids
errors of requirements omission.
 Second, Functional Decomposition enables the
earliest possible methodical approach to identification of
systematic and random reliability failure modes. This
permits a more complete mitigation of functional
performance risks that would not traditionally be
captured by verification or validation testing.

6.1 Discussion

In our experience virtually 100% of projects fail to
deliver against the initial functionality, schedule and cost
budget. This acceptance of such a high design process
failure rate by industry is interesting. Common sense
dictates that early processes will have the most impact
on improving this project performance.

Yet we observe industry is only recently beginning
to approach normalization of early stage design
processes with Process Acceptance Models (PAMs).
ISO/IEC 15504 is an example. Yet industry and PAMS
focus on deliverables, which are called work products,
and not the definition of the underlying processes
themselves. This applies particularly to the design
synthesis phase. Designers are left to their own devices
and experiences, often ad-hoc, on how they develop the
solutions to be documented by the work products.
 We attribute this lack of interest in developing
concept phase design processes to a couple of
environmental variables. First, design teams in the
concept phase are lulled into complacency as they have
lots of time, lots of budget and lots of confidence in their
abilities. Supporting these observations, we do not see
design processes blamed for failures. In our experience,
project failures are typically attributed to technical
issues, insufficient time or inadequate design resources.
Second, we see a pervasive belief that design, and in
particular concept synthesis, is a “Creative” effort that
defies structured processes.

Ironically, when projects result in commercial
success, we observe that the development teams like to
credit their creative and innovative design process skills
for their success, even if the development processes
technically failed to deliver as planned.

All of these conflicting observations lead us to
conclude that it is common to have a lack of
organizational process maturity in identifying,
documenting and deploying concept phase design
processes.
 We also note that even with an AD Functional
Decomposition framework the design processes to
synthesize and propose individual DPs remain undefined
and still equally difficult.
 This recognition that AD operates a level above the
bulk of the DP design synthesis work helps to highlight
an interesting aspect of AD Functional Decomposition
process implementations. We suggest it is more proper
to state that Axiomatic Design is a technique to
legitimately compartmentalize the hierarchical
requirements architecture of a solution around functions
using the independence axiom and functional
decomposition. The design synthesis process, itself, as
used to generate and select potential DPs, has not been
systematized by AD. We invite comments on this
observation.

The traditional definition of a quality process is
repeatability. We suggest an interesting collaborative
academic research project would be to have multiple
student design classes independently take on the same
design problem. This could be over time within a
school, or over geography with different schools. Some
efforts should apply AD. Others should be left to their
traditional devices. The results should be compared. If
AD has true elements of a process, then the AD design
outcomes should be converging, and not be a scatter
gram of solutions that we might predict with the less
systematic non-AD process approaches.

Software design projects benefitted immensely
from Function Decomposition processes. It is difficult
for programmers to visualize performance requirements
at the coding level from feature sets developed bottom
up, by business analysts and architects, from stakeholder
identified features. A top down functional decomposition
with its inherent traceability of FRs makes the
performance requirements of code modules very clear.
The implementation of functional decomposition into an
ISO/IEC 30003 SPICE PRM/PAM is underway.

This paper covers a lot of seminal ground. The
topics within many of our brief paragraphs could be
expanded into complete papers. Please contact the
corresponding author for additional questions or
discussion underlying the points made.

6.2 Discussion of Prior Process Reporting

As mentioned above, our paper is reporting on lessons
learned from our industrial application. However we can
contrast our findings against previous similar academic
discussions around potential AD system design
implementation processes.

Thompson discussed a requirements process to
precede Functional Decomposition in great length [5].
She proposed a unique process for managing
Stakeholder Needs analysis. We observe that adapting

existing conventional Stakeholder Needs analysis
processes worked fine for us.

In addition, unlike the process Thompson
suggested, we found no need for hierarchical zig-zag
mapping within, between or around Stakeholder Needs
and the FR domain. Primarily this is because we found
Stakeholder Needs are not hierarchical. Nor did we have
to create any new work products to supplement existing
conventional Stakeholder Needs analysis techniques.

The significant difference in our process findings
compared to prior practice was how we needed to use
traditional Stakeholder’s analysis to develop a discrete
intermediate work product we called Operational
Requirements which equates to AD top level FRs and
driver of Functional Decomposition.

We also explicitly identified an early quality step
of verifying the quality and completeness of the Function
Map. We did this by traceability of QFD CTQs, Affinity
List items and needs of critical stakeholders (such as
management and customers) into the set of FRs of the
Functional Decomposition Tree.

Brown and Henley discussed the structure of the
FR-DP node and related process steps [6]. Our industrial
practice findings were significantly different from the
proposals of these authors.

First, interestingly, the authors seem to discuss that
the design is the FRs. We suggest that in Functional
Decomposition, the design, and the design freedom, is
with the DPs. Solution risk, for example, is a
characteristic linked to the DP. Constraints on the
solution operate on DPs. FRs and their respected
measures are the minimal but sufficient set of functions
or sub-functions required to ensure the parent DP
‘solutions’ will deliver on its FR.

As expected and proposed by Brown and Henley,
we also agree completeness and independence of the set
of child FRs needed to implement a parent DP was a
good working quality check of a Node decomposition.
We did not find systematic Design Matrix independence
checking critical to our value proposition. We attribute
this tolerance of less than perfect independence to little
need for optimal designs; sufficient designs are adequate.
Coupled designs would easily pass required testing.
Also, it is easy to see independence (or lack there-of) by
examining any duplication of the DP verification tests
without a design matrix.

Lastly, unlike the Brown and Henley proposal, we
point out that we needed to supplement the FR-DP node
with additional attributes of Unique IDs, FR measures,
the DP verification test, and DP risks.

In particular, the DP verification test proved useful
forcing designers to both understand and define the FR
with one (or more) performance measures. This has the
effect of eliminating onerous FR definition text. This
test attribute is directly from practical test driven
development concepts in industry.

Both systematic and random performance risk
assessment at the Function Node level introduces Axiom
2 into the working Functional Decomposition process.
This early systematic risk assessment is significant.
Industrial projects do not reset when problems are found.
Delivery target dates do not change easily. Rather than

reset or refactor designs when problems are found, the
design is usually patched and some functionality and
manufacturability lost. Systematically identifying and
mitigating risks earlier the design process made Axiom 2
concepts more valuable than Axiom 1 in most projects.

FR Measures were perhaps inherent in prior
practice, but to drive good systematic DP selection
thinking processes and reliability concepts at the concept
phase we needed to make performance targets an explicit
aspect of Functional Decomposition nodes.

6.3 Integration into PAMs

As mentioned earlier, Process Assessment Models
(PAMs) are being used more often in industry to both
define and assess good design processes. PAMs assess a
process defined by a Process Reference Model (PRM).
See ISO/IEC 33004 for a relevant discussion.

Functional Decomposition is just a small piece of
the overall development process from needs elicitation to
product retirement specified in these all-encompassing
PRMs.

We propose that Functional Decomposition
processes create one new process and two new work
products that fit into a generic PRM under architectural
engineering requirements analysis. They also similarly
appear under engineering requirements analysis.

The new process is Functional Decomposition.
The first new work product is the Operational

Requirements and Function Model. It will have elements
of both traditional requirements analysis and design, in
that design processes are required to establish lower
level requirements.

The second new work product is the traceability
between the FRs of the functional model Function Model
back into the Customer Needs and Input Requirements
and forward into implementation items. Whereas
traditionally customer needs are considered requirements
and traceable to design items and their verification steps,
we propose that customer needs are traceable to
functional requirements of the Function Model, which in
turn can be traced to DPs, risks, and verification testing.

We also propose that risk assessment processes
typically found in the Management Processes of the
PRMs are extended forward in time into the
requirements analysis process to take advantage of the
Function Model framework’s ability to support
systematic risk assessment.

6.4 Recommendation

We recommend, particularly in the development of
systems that have significant functional performance
requirements, such as functional safety or high reliability
systems, that design teams develop and implement a
structured Functional Decomposition process during
concept phase processes. The process focus should be
on the benefits of the requirements analysis and process
steps needed to create Function Maps and risk
assessment and mitigation. The value is created by
exercising the process, not by documenting the work

products. In practice, Functional Decomposition serves
as an integrated requirements analysis, Function Model
and risk management process.

References

1. R. Scupin, The KJ Method: A Technique for
Analyzing Data Derived from Japanese Ethnology.
Human Organization. 56. (1997)

2. L.K. Chan, M.L. Wu, Quality function deployment:
A literature review, European Journal of Operational
Research, Volume 143, Issue 3, Pages 463-497,
(2002)

3. K.G. Jamieson, R.D. Nowak, Active ranking using
pairwise comparisons. arXiv:1109.3701v1, (2011)

4. Acclaro Overview, Functional Specs Inc. Retrieved
from
Http://www.axiomaticdesign.com/products/default.a
sp (2018)

5. M.K. Thompson. Improving the requirements
process in Axiomatic Design Theory. CIRP Annals -
Manufacturing Technology, 62(62):115-118. (2013)

6. C. Brown, H. Henley, Metrics for Developing
Functional Requirements and Selecting Design
Parameters in Axiomatic Design. The 10th
International Conference on Axiomatic Design,
ICAD 2016. Procedia CIRP 53 113–118. (2016)

APPENDIX 1: Key Terms Defined

Affinity Lists: The categorized summary lists of
Customer Needs produced by KJ Analysis

Aggregate Constraints: See Constraints.
Constraints: Constraints are derived from stakeholder

needs that serve to limit the DP solutions that can be
considered. (for example, “Product may not contain
lead”). Constraints can be further defined into Input
Constraints, Derived Constraints and Aggregate
Constraints. Input Constraints are identified from
stakeholder needs in the initial Requirements
Analysis. Derived Constraints are Constraints
created during the design process by DPs of the
Functional Decomposition decision processes which
become binding for the balance of the design effort.
Aggregate Constraints represent either Input or
Derived Constraints that can only be applied to total
system aggregate measures such as weight or product
cost. In application, Constraints are systematically
checked to verify the acceptability of Design
Parameters being considered.

Contractual Requirements: The contractual
understanding between the funding source and the
development team that exists prior to the start of
development. Typically this is a statement of
required business and customer needs. Although
these are needs in an AD approach, we maintain the
convention of calling this a Requirements document.
Typically Contractual Requirements includes a list of
project (cost, delivery, etc.) needs, proposed design
solutions, lower level design features, and numerous
Input Constraints of the system to be designed.

Customer: See Stakeholder. We prefer to reserve the
term Customer for the specific category of
stakeholders involved in the economic purchase of
the design under development. But often in industry
the term Customer is used interchangeable with
Stakeholder.

Customer Needs: (AKA Needs) See Stakeholder Needs.
Customer Needs (CN) domain: This refers to the AD

domain space of Stakeholder Needs that represents
the gathering and analysis processes related to
identifying and converting Stakeholder Needs and
other inputs into Operational Requirements.

Decomposition: See Functional Decomposition
Decomposition Node: An FR-DP point on a numbered

decomposition tree with 6 fields:
1. A unique node identifier
2. FR description
3. FR Measure
4. DP description
5. DP verification test
6. DP risk assessment

Decomposition Tree: (See Function Map)
Design Matrix (DM): A mapping of the dependencies

between specific FRs and DPs when the FRs are
mapped to the rows, and the DPs to the columns of
an analysis grid. Used to expose and document FR
to FR coupling by DPs.

Design Risk: See Performance Risk
Design Parameter (DP): The proposed conceptual

design solution to deliver the Functional
Requirement (FR) within target tolerances of the FR
Measure. A FR-DP pair is defined completely with a
DP verification test description and a risk assessment
of systematic and random risks associated with the
DP.

Design Parameter Attributes: Various measures of the
physical characteristics of DPs that need to be
tracked to manage an Aggregate Constraints of the
total system. For example: weight, cost or power
consumption.

Functional Decomposition process (AKA
Decomposition, AKA Functional Analysis, AKA
Functional Decomposition Performance Analysis):
The process of synthesizing a top down hierarchical
decomposition of a solution to the design under
development in FR-DP pairs applying the rules of
axiomatic design to develop a functionally
independent, decoupled solution architecture that
defines the FRs and DPs at all levels of the design.

Function Map: (AKA Function Tree, AKA
Requirements Decomposition Tree, AKA Functional
Model, AKA Functional Decomposition) A
hierarchical top to bottom decomposition of
requirements, starting from Operation Requirements,
composed of Decomposition Nodes with parent and
child relationships, consistent with Axiom 1
independence rules, is called a Function Map.

Functional Requirement (FR): A solution neutral
description of the required functional performance.
An FR is defined completely with a Description and
a target Performance Measure with acceptable
Tolerances.

Input Needs (AKA Input Requirements): The sum total
of product needs from which Operational
Requirements will be derived and against which the
Function Map will be verified. These are composed
of Contractual Requirements, Stakeholder Affinity
Lists, prior product history and other design and
process needs. In an AD perspective, these are
Needs, but we will also use the traditional industry
term of Input Requirements.

Needs: See Stakeholder Needs
Node: See Decomposition Node
Operational Requirements (AKA Top Level Functions,

AKA System Performance Requirements): These are
the objective requirements that summarize the
expected and required business solution functional
performance of the design under development in total
absence of any definition of the solution. This
defines functional performance requirements, which
a subset of the total system requirements.

Performance Risk (AKA Functional Performance Risk,
AKA Design Risk): An assessment of the risk that
the selected DP will fail to deliver the FR
Performance Measure? Systematic and random risks
are analysed. Analysis is structured by failure modes
in an FMEA format.

Performance Measure: The expected performance of the
Functional Requirement. This will consist of a
range of acceptable performance (Often a Target and
a Tolerance). For example a requirement for weight
control will have a target weight with acceptable
tolerances.

Prioritization: The process of assigning an ordinal
ranking of goodness to options under consideration.
Prioritizing is used in trade analysis and QFD needs
ranking.

Project Requirements: These are business requirements
for the development process such as project costs,
delivery dates and required review and approval
cycles. These are usually contained within the
Contractual Requirements.

Project Risk: Risks related to meeting project goals of
delivering required business functionality on time
and on budget. In contrast, Product Risk assesses the
confidence at all levels of a proposed solution that
the DPs will deliver on the FR Target Measure
within required Tolerances.

Process Variable (PV) domain: This is referred to as the
implementation or manufacturing design space
associated with the implementation of a DP. A
documented completed design has addressed all the
“PV” issues of reliably replicating a solution to
deliver on the Operational Requirements.

Requirements: See Functional Requirements
Requirements Analysis: A method of using process

tools such as Kano, K-J Analysis, QFD and others to
convert Customer Needs into a coherent de-
conflicted set of Operational Requirements and Input
Constraints.

Requirement Decomposition Trees: See Function Maps
Requirement Reference Numbers: (AKA Unique Node

Identifiers) Unique identification numbers associated

with FR-DP nodes. These are used in a practical tool
to track nodes through edits and traceability.

Stakeholder (AKA Customer): The broad group of
people, organizations, regulations, interfaces that
place demands upon, and interact with the design
under development from which needs for the design
under development can be collected.

Stakeholder Needs (AKA Customer Needs, AKA
Needs): A ‘Voice of the Customer’ collection of
inputs on requirements (or features) of a potential
solution that are essential or very important to
stakeholders of the system being created. In
Requirements Analysis, these needs are codified by
KJ Analysis into summary need statements called
Affinity Lists. After the development of Operations
Requirements, Needs become Requirements in a
vocabulary change.

Trade studies: the process of analysis to determine the
preferred Design Parameter (DP) to select from a set
of potential DPs

APPENDIX 2: Functional Decomposition process

