

* Corresponding author: erik.puik@hu.nl

Application of Axiomatic Design for Agile Product Development

Erik Puik1,*, and Darek Ceglarek2
1HU University of Applied Sciences Utrecht, Padualaan 99, 3584 CH Utrecht, the Netherlands
2International Digital Laboratory, WMG, University of Warwick, Coventry, CV4 7AL, UK

Abstract. Agile, and iterative, development methods for new product development are gaining in
popularity under product engineers; where it initially was just applied for software development, now larger
adoption takes place for product development in general. The design rules of agile development are
somewhat conflicting with the guidelines of Axiomatic Design. In this paper, it is investigated why this is
the case, what can be done about it, and how can the strengths of agile development be combined with
Axiomatic Design to optimise methods for product design. It is shown that the methods are indeed advising
on different and conflicting strategies, however, by attenuating the agile design rules in the early stage of
design, and doing the same for AD in the later stage of design, best of both worlds can be combined.

1 Introduction
New product development (NPD) is getting more
complex by the year due to the increased means for
global communication, mainly supported by the internet.
More development groups are globally active, which
increases competition in research and development.
Speed is an essence when executing NPD due to this
competition. Products that are introduced to the market
too late will miss substantial turnover [1]. Developers
apply methods for ‘Systems Engineering’ in the
development process, being able to oversee elements of
the design process in the context of the whole system [2]
(the term ‘Engineering Design’ is also applied in the
US). Traditional system engineering models are applied
in NPD to describe the process in a linear way, such as
the ‘Waterfall-Model’, ‘PRINCE2’, or the ‘V-Model’.
Since the change of the century, the shortcomings of
these models have grown to serious obstacles due to the
increasing NPD-dynamics of modern days [3]. Agile and
iterative methods, ‘Scrum’ being the most valued of
many variants, have proven the ability to handle the
dynamics, however, this tends to come at the cost of
rigidity in NPD [4]-[6]. E. g. for the scum methodology,
this lack of rigidity is mainly caused by client
involvement and lack of visibility over the project
outside the iterative ‘sprints’. To address rigidity in
NPD, there are basically two ways to be applied [7]:
(i) Organise the design, and all its elements, by the

application of knowledge (as detailed understan-
ding of the design is enabled by knowledge);

(ii) Test preliminary designs as soon as possible to
enforce appearance of errors and address them
accordingly (letting physics speak).

Since testing is a central theme in the application of agile
product development methods, topic (ii) is well-

embedded in virtually all agile methodologies. It is
typically topic (i) that is causing the problems when
agile development methods are used. As such, Scrum-
sprints focus more on detailed issues than the ‘design of
the whole’. Agile development methods have a tendency
to move attention from ‘the whole’ to smaller, more
specific problems that stand between the now and the
next demonstrable prototype. This is where Axiomatic
Design (AD) is expected to contribute. With its
Independence and Information Axioms, it focuses on
respectively ‘Doing the right things’ and ‘Doing these
things right’ [8]. Mainly the first proposition may be
considered a valuable addition to most agile
development methods, maintaining focus on the ‘big
picture’. Questions that arise are:
• Can typical errors in the agile development process

be described in the context of AD;
• What are the consequences on the Axioms if these

errors occur;
• How can AD be applied to prevent these errors from

happening.

The paper is organised as follows. Section 2 explains the
background of linear and agile methods. Section 3
explains the methodology of investigation, and Section 4
inventories possible errors in the (agile) development
process. Finally, Section 5 discusses the findings and
draws conclusions.

2 Background
In this background section, traditional linear models are
inventoried. These linear models have been preceding
the agile models that recently gained in popularity. The
most-applied agile method being the Scrum-
methodology.

2.1 The Waterfall Model

Widely applied models in industry are the ‘Waterfall-
Model’ and the ‘V-Model’. Royce, who was the first to
report the Waterfall-Model [9] criticised the model in the
same article blaming the lack of (old school) process
iterations and testing. The Waterfall-Model also forms
the basis for the process-model of the ‘PRINCE’ method
that was introduced in 1989 (PRojects IN Controlled
Environments). PRINCE’2’, was a continued
development to enable broader application than PRINCE
that was mainly intended for ICT developments.

2.2 The V-Model

The V-Model, also based on the Waterfall-Model, was
originally introduced by Boehm [10] and simultaneously
developed further in Germany and the US in the second
half of the eighties [11], [12]. In the 1991 proceedings
for the National Council on Systems Engineering
(NCOSE); now INCOSE as of 1995, the V-Model was
adopted in the US for modelling of mainly software
systems. Like all basic Waterfall-Models and PRINCE2,
the V-Model suffers from the problem of ‘missing
iterations’ [3], [9]. This is not as much a problem to
accountants and project managers as it is for developers
and testers. The most damaging aspect might be the
effect that the V-Model effectively discourages user
involvement in evaluating the design before arriving at
the formal testing stages. By then it is too late to make
significant changes to the design. It must be mentioned
that the need for sufficient iterations was emphasised
when Rook introduced the V-Model, but since the model
does not specifically visualise it, unilateral application of
the model has become the standard for most industrial
applicants. Nevertheless, the V-Model, and in somewhat
lesser extent the Waterfall-Model, today are popular
systems engineering methods in industry since they meet
needs for management. Though the V-model was
presented over 30 years ago, discussion is still active and
many variations of the model are still being developed
[13]-[16].

2.3 Agile Methods for Product Development

Shewhart described in 1939 the ‘Plan-Do-Check-Act
cycle of continuous improvement’ based on the
principles of empiricism as induced by Bacon in his 17th
century work ‘Novum Organum’ [17], [18]. The initial
Plan-Do-Check-Act was advertised more broadly by
Deming who replaced the stage ‘Check’ by ‘Study’ to
emphasise that the analysis in this stage was to prevail
over inspection [19]. The method was optimised in the
sixties by respectively Asimow and Mesarovic as the
‘Iconic model of the Design Process’ [20], [21]. The
Iconic model introduces the cycle of Analysis, Synthesis,
Evaluation, and Communication. This foundation forms
the basis for modern iterative models for iterative project
control up to date.

The need for a combination of structure and
dynamics in the ICT world has led to further

development methods for iterative development. Agile
software development methodologies focus upon
incremental design and hence a cyclic approach. The aim
with these methods is to: (i) make the development
process more responsive in changing environments, (ii)
pursue functioning software over extensive
documentation, (iii) centre individuals and their
interactions rather than tools and processes, and (iv)
value customer collaboration over customer contract
negotiation.

Of great influence are the ‘Spiral Model of
Software Development’ by Boehm [22], the
‘Engineering Design Process’ by Ertas & Jones [23],
HP’s ‘Product Development Process’, the ‘Scrum
development method’ [24], and IBM’s ‘Rational Unified
Process’ [25]. All these methods were initially developed
to streamline software developments but later-on found
their ways for broader application.

Scrum may be considered the most valued form
within the family of agile development methodologies.
Scrum uses incremental development procedures with an
objective to get working software into the hands of the
stakeholders as quickly as possible. As such, Scrum puts
business value functions into stakeholder possession
early on in the software development life cycle. The
more traditional process-oriented development methods
cannot provide this agile capability; stakeholders
typically would not have access to any software
produced until far later in the process. This agile
performance is provided in a straightforward procedure
that enhances focus and communication in an iterative
process. Scrum starts with the business case just as one
would do with process-oriented development. From this
point, it diverges from linear development methods. The
customer requirements are inventoried and refined in
close cooperation with stakeholders and the project
group. The remaining requirements or ‘User Stories’ are
kept in a list known as the ‘Backlog’. Cycles or ‘Sprints’
are initiated from the backlog to address the customer
requirements with the objective to produce operating
solutions. The solutions should be fully functional,
tested, and documented with the ability to be shipped as
a finished product, though with limited functionality.
Sprints may last from one week to a month and their
progression is kept in a ‘Burn Down Chart’ to feed its
status back to the team. A structure of usually brief
meetings takes care of extra information exchange
within the project team and leads to joint decisions that
are supported by the customer as he regularly
participates meetings.

Scrum and related agile methods also suffer from
drawbacks compared to the traditional methods. It may
fail at the following aspects: (i) a drawback according to
Highsmith & Cockburn is the fact that an external client
has to be actively involved in the project [4]. The client
has to be able and available to test the typical monthly
releases and to suggest new or modified functionalities,
(ii) by applying Scrum, the vision of the client highly
influences development. Highsmith & Cockburn also
show that if the client does not have a clear sense of the
product’s direction, the members of the development

team will tend to behave in the same way, and the final
product can be significantly different to what is
expected. This makes the main strength of Scrum also
one of the main weaknesses: client involvement in the
development process, and (iii) another potential
weakness is the relatively low visibility over the project
outside sprints. This makes it difficult to estimate how
long a project will take or how much it will cost. In
projects with external clients, where bidding is used to
determine the contractor for projects, this can be a major
drawback.

3 Methodology
The methodology that is applied to investigate the
success of agile methods is to compare agile
development to good practice in AD.

3.1 Dubakov’s model for the analysis of agile
development

Dubakov describes the essence of agile software
development and presents an interesting view on his
weblog that matches particularly well with AD [26].
Though the analysis is born from a perspective of agile
software development, they seem to work for general
product development too.

Fig. 1. Three goals of agile development processes as

proposed by Dubakov (numbers 1-4 added)

In figure 1, the upper left-hand sphere states ‘Do right
things’ (note that picture states ‘thing’ but referred text
states ‘things’). Dubakov explains that these are
‘workable things that solve specific problems and solve
them well’. This is analogue to satisfaction of the
Independence Axiom that forces the definition of: (a)
well-chosen Functional Requirements (FRs), (b)
matching Design Parameters (DPs) and, (c) an
uncoupled or decoupled design. It is only possible to ‘Do
right things’ if the Independence Axiom is satisfied.
The right-hand sphere states ‘Do things right’. This
addresses excellence in execution. From the perspective
of AD, it means that the DPs are capable of satisfying
the FRs under all circumstances. Doing things right is a
process with strong stochastic elements, needing quality
in execution, to guarantee that satisfaction of the FRs

takes place in all imaginable situations. This means that
axiomatic information of the relations between DPs and
FRs are eliminated, thus satisfying the Information
Axiom. The third element, and here it adds an element
that is rather neglected in AD, is the element of
development speed, indicated in the lowest sphere of
Figure 1. The right things should be executed well,
preferably in a small amount of time. It is clear that all
three spheres exist in a field of tension.
There are four overlapping areas that have distinctive
and characteristic project approaches (shaded areas as
indicated and numbered in Figure 1):
(1) Ideal situation, the right things are done well in a

short amount of time;
(2) The right things are done in the right way, however,

not at the fastest pace;
(3) The right things are done fast, however, they are not

done well;
(4) Things are done well and fast, however, they might

be the wrong things.

Next, these overlapping areas, further referred to as
Project Execution Practices (PEPs) will be evaluated
from the perspective of AD.

3.2 Modelling good practice in Axiomatic
Design

For the evaluation of the PEPs, a model called the
Axiomatic Maturity Diagram (AMD) will be applied.
AD prescribes a clear order in which the axioms should
be satisfied; start with the Independence Axiom, after
that, satisfy the Information Axiom. This design rule was
analysed before using the AMD.

Fig. 2. Preferred development path through the Axiomatic

Maturity Diagram, as indicated in literature, first moves
to the right to satisfy the Independence Axiom. After
this, the Information Axiom is satisfied in an upward
direction

The AMD is a two-dimensional representation of the
Axioms [8], [27]. On the horizontal axis, it shows the
progression of the Independence Axiom, from ‘No
Organisation’ to ‘Proof of Concept’. On the vertical axis,
it shows the progression of the Information Axiom going

2

3
4

1

Independence Axiom

In
fo

rm
at

io
n

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

D
oi

ng
 th

in
gs

 ri
gh

t

Doing the right things

from ‘Not Robust’ to ‘Fully Robust’. Product
development, in the AMD, will start somewhere at the
lower left-hand side and will move diagonally upwards.
The design-path, according to ‘Good Practice’ in AD
meets the following demands in that specific order [28]:

• Define FRs and find all relevant DPs to address
unrecognised information. Next, if the design
matrix is not uncoupled yet, decouple the design
matrix to address recognised information (satisfy
Axiom 1);

• Match the design ranges and system ranges to
guarantee an adequate common range to address
axiomatic information (satisfy Axiom 2).

This leads to a preferred path that first moves to the right
and then angles upwards, as plotted in Figure 2.

In case of the rather conservative and slow but safe
path of the Waterfall-Model, the procedure of following
Independence and Information Axioms in that order
would be persistent (Figure 3). A slightly riskier path
that in practice enhances the development speed of
projects is the path of ‘Simultaneous Engineering’ [8],
[29]. This gives the designer more room to start early
work on robustness, process technology, and other life
cycle elements. It merges the work on Independence and
Information Axioms and possibly shortens project lead
time.

Fig. 3. Depending on the nature of the project, a different

strategy may be followed. The right lower curve would
represent a waterfall management approach, while the
upper would represent the path in case of a
simultaneous engineering strategy

Obviously, the safer path is the path proposed by the
Waterfall Model, that is also the preferred path in AD. In
this situation, the satisfaction of the Independence
Axiom will at forehand assure conceptual rigidity of the
system design. When this is completed, and the
robustness of the system is increased, there is no risk that
optimised relations between FRs and DPs need
reconsideration. Simultaneous Engineering introduces
risks; the fact that the conceptual design is not
crystallised may cause conceptual design changes. This
means that the FR-DP relations change. If the FR-DP

relations were yet optimised, it means that the work for
optimisations may indeed have been spent in vain (and
work done is lost).

4 Evaluating the PEPs from the
perspective of Axiomatic Design

The Project Execution Practices of Figure 1 (overlapping
areas 1-4 of paragraph 3.1), will now be investigated
using the Axiomatic Maturity Diagram.

(1) The right things are done well in a short amount of
time

In this case, little criticism is possible. The product is
conceptually strong, robust-engineered, and all that was
accomplished in a short amount of time. This case more
or less follows the path of simultaneous engineering;
conceptual choices happened to be made in a correct
manner (path 1 of Figure 4);

Fig. 4. The four Project Execution Practices and their path

though the AMD

(2) The right things are done in the right way, however
not at the fastest pace

In the second case, the standard development ways of
AD or one of the derivatives of the Waterfall-Model
were followed. This development may not be considered
to be agile. Market introduction could be late, or later
than ideal. In this case, total turnover over the lifecycle
of the product may be lower than possible when an agile
strategy would have been applied (path 2 of Figure 4);

(3) The right things are done fast, however, they are not
done well

This third PEP is recognised because the product, though
its concept is smart and well-defined, still does not
perform well because the FRs cannot be maintained
within their operational areas by the DPs. Customers
may be irritated because the product fails. If launched in
this state, the service cost may go high, as corrective
actions for customers are needed without interruptions.
This PEP can be upgraded to PEP 2 by further optimising
the design. By doing this, time will slip but the product
may still become a ‘Good Design’ (path 3 of Figure 4);

Independence Axiom

In
fo

rm
at

io
n

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Simultaneous
Engineering

Waterfall

Operational Room for
Project Management style
Speed vs Risk Mitigation

Independence Axiom

In
fo

rm
at

io
n

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

1

2

4

3

(4) Things are done well and fast, however, they might
be the wrong things

This is the most devastating of all four options. The
product has the appearance of a well-engineered product;
however, the product is not able to perform well under
required circumstances because the underlying concept
is structurally inadequate. Problems with the product
cannot be fixed easily because it needs a total redesign to
correct the bad genes of the design. A lot of work may
be spent in vain as the total redesign renounces the
conceptual choices of the old design and introduces new
DPs to satisfy the FRs. FR-DP relations have to be
composed from the ground up (path 4 of Figure 4);.

4.3 Further investigation of PEP 4 and its
relation to agile design methodologies

The objective to get working software into the hands of
the stakeholders as quickly as possible is an important
feature of agile product development methods. This
feature comes with strengths and drawbacks:
• The conceptual development of the product is part of

multiple sprints. Sprints are initiated from the
backlog to address the customer requirements with
the objective to produce operating solutions. The
solutions should be ‘fully functional, tested, and
documented with the ability to be shipped as a
finished product, though with limited functionality’
[30]. This means that relations between FRs and DPs
are made robust, while the complete set of FRs is not
known yet. As a result, the Information Axiom is
addressed before complete satisfaction of the
Independence Axiom. As such, product development
follows a risky path straight through the middle of
the AMD. This is shown in Figure 5, ‘End of first
sprint’;

Fig. 5. The Scrum development procedure consists of multiple

sprints in which a subset of the FRs are addressed. It is
hard to foresee if sprints are able to build further on the
result of previous sprints, or that conceptual corrections
need to be made. The former situation leads to quick
progression of the project. The latter slows the project
down and work is spent in vain

• Depending on the conceptual choices made, further
FRs may be satisfied in the next sprint without
conceptual revision. If this is the case, the next sprint
builds further on the previous (Figure 5, ‘Concept
still OK’). If the concept needs changes in order to
satisfy the new FRs, the project status drops in the
AMD. In this case, the development gets less
efficient; new DPs are needed to satisfy the FRs and
earlier optimisations are lost. This is shown in Figure
5, ‘Conceptual Revision’;

• The efficiency of these agile ways of product design
could deliver dramatic results. In an unfortunate
situation, the design could need many conceptual
revisions. For every single revision, many
optimisations of the design would need to be redone
causing a lot of work is spent in vain (Figure 6).
However, chances of this actually occurring seem
moderate from a statistical perspective.

Fig. 6. In a worst-case scenario, many conceptual fixes of the

product design would be needed

• A general advantage of agile development methods is
that they pull testing towards the present. Earlier
investigations have shown that testing and
organisation are the most effective way to find
hidden complexity (‘unknown unknowns’) in the
design process [1], [8], [27], [31]. This hidden
complexity is the main cause for surprises during the
design process. Testing is an essential element for
agile development, as it substantially increases the
chances that these hidden artefacts are found in an
early stage of the design process. The sooner hidden
problems are found, the sooner they can be
addressed, which reduces corrective actions in the
conceptual design process. Agile development has
great opportunities in this sense;

• Unsuccessful iterations in the design process do not
automatically lead to an inefficient development
process. As long as iterative cycles are organised as
‘safe-fail’ experiments, the test will provide positive
results; (i) if the test succeeds, it provides for a
solution, but (ii) if the test does not succeed, it may
provide essential knowledge of the design process. A
solid knowledge base of the design and the chosen
solutions is essential as the result of the design
process never exceeds the state of knowledge of its
designers [7].

Independence Axiom

In
fo

rm
at

io
n

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

End of first
sprint

Concept
still OK

Conceptual
revision

Independence Axiom

In
fo

rm
at

io
n

A
xi

om

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Many conceptual
revisions needed

5 Discussion
Strengths
Agile development methods, in this case mainly
focussing on Scrum and AD appear rather
complementary. The rigidity of AD seems superior
compared to Scum, however, the power to apply large
series of safe-fail tests seems a particular strength of
Scrum. The rigidity of AD
and the agile properties of Scrum may also collide;
during the development cycles, or sprints, time is
limited, and there may be not enough time to spend
extensive investigation to decouple the design.

Weaknesses
Scrum uses incremental development procedures ‘with
an objective to get working software into the hands of
the stakeholders as quickly as possible’ [30]. This means
that every iteration cycle aims to end at the upper side of
the AMD (fully robust). Mainly in the beginning of the
project, there are substantial uncertainties which may
lead to changes in the conceptual design of the product
to be developed. This means that many FR-DP-PV
relations that have been optimized to become robust are
changed and may even be rejected from the final design.
In these cases, work for optimisations is spent in vain
and work done is lost.

Another problem is the plannability when Scrum is
applied. Sprints may be planned as safe-fail processes
and as such they can be successful even when the
outcome of investigations are negative. Though
knowledge development may be considerable, project
progression is minimal. It is noted that this could occur
in AD as well when the process of zigzagging is not
successful and needs to be reconsidered and executed
again.

Limitations
Dubakov’s ‘essence of agile software development’
(Figure 1) is not particularly intended for application of

traditional linear development methods. The concept
however is basically so generic that it should not be a
problem to apply it in a broader context. Secondly, the
examples in this paper are mainly based on experience
and literature. Other agile development methods, as
mentioned in the introduction, may have other
advantages and limitations. The focus on iterative
development cycles though, is generic for most agile
development methods and so are the strengths and the
drawbacks. Thirdly, this analysis is an analytical
approach based on the scientific characterisation of both
Scum and AD; practice could work out differently.
Therefore, this analysis would benefit from thorough
experimental verification. This is not an easy task as
such a verification would need many subsequent projects
to be executed and monitored under a controlled or at
least known environment.

Other considerations
Another finding is based on the analysis of Figure 3 [8].
It shows that it is unwise to spend energy to increase
robustness when the system is far from decoupled yet.
The chances that FR-DP relations have to be revised are
quite large in this stage of development. As the
development proceeds, and FR-DP relations start to
crystallise, at this point the Independence Axiom is
satisfied up to some extent, the chances become
significantly smaller. As such, it is wise to stay in the
shaded zone of Figure 3, eventually on the upper side.
Acting outside this zone increase the chances on harming
the FR-DP relations. Unfortunately, this is not what
Agile development methods exhort. Using the insights of
AD, it would be better to not divert completely from the
development path of AD. Which path this should be is
difficult to determine based on this study, mainly
because the exact location of the higher curve was not
investigated yet. Two possible boundaries for such a
development path are shown in Figure 7.

Fig. 7. Alternative development paths that are safer in execution. These paths are not completely
conforming the Scrum methodology but approach the safer development order of AD to

satisfy the Independence and Information Axioms in that order

Independence Axiom

In
fo

rm
at

io
n

Ax
io

m

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Independence Axiom

In
fo

rm
at

io
n

Ax
io

m

P
ro

of
 o

f C
on

ce
pt

N
o

O
rg

an
is

at
io

n

Fully Robust

Not Robust

Operational Room for
Project Management style
Speed vs Risk Mitigation

6 Acknowledgements
This research was supported by the HU University of
Applied Sciences Utrecht, and the project ‘(G)een Moer
An’, funded by Stichting Innovatie Alliantie (SIA) in the
Netherlands.

References
[1] E. C. N. Puik, “Risk Adjusted Concurrent

Development of Microsystems and Reconfigurable
Manufacturing Systems,” Coventry, 2017.

[2] R. C. Booton and S. Ramo, “The Development of
Systems Engineering,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 20, no. 4,
pp. 306–310, Jul. 1984.

[3] J. Christie, “The Seductive and Dangerous V-
Model,” Testing Experience, no. 4, pp. 73–77, Dec-
2008.

[4] J. Highsmith and A. Cockburn, “Agile software
development: the business of innovation,”
Computer, vol. 34, no. 9, pp. 120–127, 2001.

[5] N. F. N. il Ionel, “Critical analysys of the Scrum
Project Management Methodology,” 2008.

[6] V. Vinekar, C. W. Slinkman, and S. Nerur, “Can
Agile and Traditional Systems Development
Approaches Coexist? An Ambidextrous View,”
Information Systems Management, vol. 23, no. 3,
pp. 31–42, Dec. 2006.

[7] E. C. N. Puik and D. Ceglarek, “The Quality of a
Design Will Not Exceed the Knowledge of its
Designer; an Analysis Based on Axiomatic
Information and the Cynefin Framework,”
ICAD2015, vol. 34, pp. 19–24, 2015.

[8] E. C. N. Puik and D. Ceglarek, “A Different
Consideration on Information and Complexity in
Axiomatic Design,” 1st ed., no. 4, N. P. Suh and A.
M. Farid, Eds. 2016, pp. 105–129.

[9] W. W. Royce, “Managing the development of large
software systems,” proceedings of IEEE WESCON,
pp. 328–338, Sep. 1970.

[10] B. W. Boehm, “Guidelines for Verifying and
Validating Software Requirements and Design
Specifications,” IEEE Softw., pp. 1–20, 1979.

[11] P. Rook, “Controlling software projects,” Software
Engineering Journal, vol. 1986, no. 1, pp. 7–16,
1986.

[12] J. Friedrich, U. Hammerschall, M. Kuhrmann, and
M. Sihling, Das V-Modell XT. Berlin/Heidelberg,
Germany: Springer, 2009.

[13] P. C. Anitha, D. Savio, and V. S. Mani, “Managing
requirements volatility while ‘Scrumming’ within
the V-Model,” 2013 IEEE Third International
Workshop onEmpirical Requirements Engineering
(EmpiRE), pp. 17–23, 2013.

[14] M. McHugh, O. Cawley, F. McCaffcry, I.
Richardson, and X. Wang, “An agile V-Model for
medical device software development to overcome
the challenges with plan-driven software
development lifecycles,” Software Engineering in
Health Care (SEHC), 2013 5th International
Workshop on, pp. 12–19, 2013.

[15] R. Höhn, S. Höppner, M. Broy, A. Rausch, R.

Petrasch, S. Biffl, R. Wagner, W. Hesse, and K.
Bergner, Das V-Modell XT, 1st ed.
Berlin/Heidelberg: Springer, 2008.

[16] S. Mathur and S. Malik, “Advancements in the V-
Model,” International Journal of Computer
Applications, vol. 1, no. 12, pp. 29–34, 2010.

[17] W. A. Shewhart, Statistical Method from the
Viewpoint of Quality Control. Mineola, New York:
Dover Publications, 1939.

[18] F. Bacon, Novum organum. London: Forgotten
Books, 1620.

[19] W. E. Deming, Out of the Crisis. Cambridge,
Massachusetts: MIT Press, 2000.

[20] M. Asimow, Introduction to design. Upper Saddle
River, New Jersey: Prentice Hall, 1962.

[21] M. D. Mesarovic, Foundations for a general
systems theory. Cleveland, Ohio, U.S.: Systems
Research Center, Case Institute of Technology,
1964.

[22] B. W. Boehm, “A spiral model of software
development and enhancement,” Computer, vol.
21, no. 5, pp. 61–72, 1988.

[23] A. Ertas and J. C. Jones, The engineering design
process, 1st ed. Hoboken, N.J.: Wiley, 1996.

[24] K. Schwaber, “SCRUM Development Process,” no.
11, pp. 117–134, 1997.

[25] P. Kroll and P. Kruchten, The Rational Unified
Process Made Easy: A Practitioner's Guide to the
RUP. Reading, MA: Addison Wesley, 2003.

[26] M. Dubakov, “The Future of Agile Software
Development,”
https://www.targetprocess.com/articles/the-future-
of-agile-software-development/.

[27] E. C. N. Puik and D. Ceglarek, “A Theory of
Maturity,” presented at the 10th International
Conference on Axiomatic Design ICAD2014,
Lisbon, 2014, 1st ed., pp. 115–120.

[28] N. P. Suh, “Axiomatic Design - Advances and
Applications,” no. 5, Cambridge, MA: Oxford
University Press, New York.Oxford, 2001, Chapter
5, pp. 239-298., 2001.

[29] H. J. Bullinger and J. Warschat, Concurrent
Simultaneous Engineering Systems.
Berlin/Heidelberg, Germany: Springer Science &
Business Media, 2012.

[30] K. Schwaber and M. Beedle, Agile Software
Development with Scrum. 2002.

[31] E. C. N. Puik and D. Ceglarek, “A Review on
Information in Design,” presented at the 10th
International Conference on Axiomatic Design
ICAD2014, Lisbon, 2014, 1st ed., pp. 59–64.

