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 Abstract.  Independence Axiom offers designers a guide to good design. It declares that the design parameters (DPs) 
 conceived for a good design must maintain the independence of the design functional requirements (FRs).  Specifically, by 
 relating FRs to DPs through a design matrix [DM] with elements ∂FRi/∂DPj, Independence Axiom declares that only
 designs with diagonal or triangular design matrix can maintain the functional independence of FRs; and that they should be
 the only acceptable ones. 

 Starting with the formal definition of functional independence, we derive the criterion for functional independence of FRs 
 as the Jacobian determinant | J | ≠ 0; where the Jacobian matrix [ J ] is shown to be identically equal to [DM]. We further
 show that if and only if  | J | ≠ 0 can the design FRs achieve their target values. Thus the criterion | J | ≠ 0 substantiates the
 declaration of Independence Axiom since determinant of a diagonal or triangular design matrix is not equal to zero. It 
 serves as the mathematical basis for teaching and implementing Independence Axiom in design. 

 Two case studies are presented to illustrate the implementation of Independence Axiom via the Jacobian determinant | J |. 

 
1 Introduction 
 
Prior to the introduction of the Independence Axiom, 
there was no scientific basis to assess the goodness of a 
design. Assessment is usually done through build and 
test.  In 1979, Independence Axiom was introduced to 
define goodness of a design and to guide designers 
through the design process.  The axiom is assumed to be 
self-evident truth for which there is no exception or 
counter-example. It cannot be proven nor derived from 
laws of nature [1]. 
     Because of the axiomatic assumption it imposes, 
Independence Axiom has been rejected by part of the 
design community. To satisfy the critics and to further 
advance Independence Axiom as a science in design, we 
develop in Section 2 a mathematical basis to support the 
axiomatic assumption.  This is followed by two case 
studies in Section 3. The hubcap case heightens the need 
for functional independence when functional 
requirements are opposing. The ignition switch case is a 
return of the hubcap problem. It is presented to stress the 
point that design as a science – e.g., Independence 
Axiom – should be taught so that design mistakes need 
not be learned again and again. 

2 Math basis of Independence Axiom 
 
Usually, a design has multiple functional requirements 
FRs. These FRs are realized with design solutions that 
involve physical entities, which we label as DPs the 
design parameters. The FRs are related to DPs through 
physical laws which we denote as f! ∙ , k = 1, 2, ⋯, n : 
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FR1 = f1(DP1,!,DPm )
"

FRn = fn (DP1,!,DPm )
 

 
Or in vector form, 
 

  FR = f (DP)  
 
In the above and hereafter, bolded quantities denote 

vectors, bracketed quantities denote matrices and 
  
f i( )

denotes vector-valued functions. 
     Axiomatic Design offers designers two axioms to 
guide them in the choice of design solutions [1]. In one 
of the axioms, the Independence Axiom, it directs 
designers to go for solutions with DPs that maintain the 
independence of FRs. Specifically, Independence Axiom 
proposes an equation in the form: 

 

  
FR = A⎡⎣ ⎤⎦DP  

 
where elements of the [A] matrix, the design matrix, are: 
 

 
Aij =

∂FRi

∂DPj

 

 
Considering only those elements "X" that have a strong 
effect on an FR relative to its tolerance, Independence 
Axiom declares that only designs with diagonal or 
triangular design matrix [A] in “X” can maintain the 
functional independence of FR. They are therefore the 
acceptable ones.  The mathematical basis for such a 
declaration has been derived in [2].  It is further 
reviewed here as a lead up to the case studies that follow. 



 

     The task in design is to find the root of the equation: 
 

  FR −FR* = f (DP)−FR* = 0 ;              (1) 
 
that enables FR to achieve its target value FR*.  

Usually  f (DP) is nonlinear so that the root ≡   f
−1(FR*)

cannot be solved analytically. In its place,   f (DP) in 
Equation (1) is linearized via Taylor expansion: 

 

  
f (DP)−FR* ≈ f (DPk )+ J⎡⎣ ⎤⎦(DP − DPk )−FR* = 0 .  

 
Above equation is then solved iteratively via a 
succession of linear equations: 
 

  
DPk+1 = DPk − J⎡⎣ ⎤⎦

 −1
f (DPk )−FR*{ } .

 
 
Iteration with k = 0, 1, 2, … ends when !"!!! − !"!  
is less than a desired accuracy.  At that point 
!"!!!serves as the root to Equation (1). 
     In the above, the matrix [J] is the Jacobian of   f (DP)
with element ∂FRi ∂DPj evaluated at !"!. It is identically 

equal toAij , the element of the design matrix [A] defined 
earlier. If Jacobian determinant | J | = 0, then the inverse 

of the Jacobian 
 

J⎡⎣ ⎤⎦
 −1

does not exist; iterative root 
finding cannot proceed and FR cannot achieve its target 
FR*. This is the crux of design’s failure to achieve its 
target. 
     Under what condition then is | J | = 0? In the next 
section, we show this condition to be the consequence of 
functional dependency among FRs. While the derivation 
is based on two FRs involving two DPs, similar 
derivation holds true for n FRs involving n DPs, n >2. 
     We start with the formal definition of functional 
dependency. Namely, FR2 is functionally dependent on 
FR1 if it is a function of FR1: 

 

 FR2 = FR2(FR1)
 

 
Applying the chain rule for differentiation, we have  
 

 

∂FR2

∂DP1

=
∂FR2

∂FR1

⋅
∂FR1

∂DP1

                 (2)
                  

 

    

∂FR2

∂DP2

=
∂FR2

∂FR1

⋅
∂FR1

∂DP2

                 (3)  

     

Subtract 
 

∂FR1

∂DP1

x Equation (3) from
 

∂FR1

∂DP2

 x Equation 

(2) to eliminate the product
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we arrive at the condition for functional dependency: 
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Note that 
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∂DP2

∂FR1
∂DP1

−
∂FR1
∂DP2

∂FR2
∂DP1

⎛

⎝⎜
⎞

⎠⎟
is the determinant 

 

 

∂FR1

∂DP1

∂FR1

∂DP2

∂FR2

∂DP1

∂FR2

∂DP2

≡ J .

 
 
Thus, if FR2 is functionally dependent on FR1, then 
 

| J | = 0. 
 
The converse case also holds true, [2].  If | J | = 0, then 
  

FR2 is functionally dependent on FR1. 
 

Combining the above two statements, 
 
If and only if | J | = 0, then FRs are functionally 

dependent;  
 
So that (FR1,FR2 ) cannot achieve the targets FR1

*, FR2
*( )  

 
By the same token,  
 

If and only if | J | ≠ 0, then FRs are functionally 
independent;  
 
and  (FR1,FR2 )  can achieve targets 

 
FR1

*, FR2
*( ) . 

As noted earlier, the design matrix [A] is identical to 
the matrix [J]. Its determinant for a diagonal or triangular 
[A] is not equal to zero. Thus according to the statement 
above, the FRs are functionally independent and the FR 
can achieve its target value FR *. In other words, 
Independence Axiom is corroborated by the condition     
| J | ≠ 0. The | J | criterion thus can serve as the basis to 
verify compliance with the Independence Axiom. 

 
3 Case studies in Independence Axiom 
 
3.1 Hubcap – a functionally dependent design   
 
This case study was described in [3]. It is reviewed here 
to elucidate the functional dependency of the design. 
Figure 1A shows the front view of GM 1986-88 Pontiac 
6000 hubcap.  Figure 1B is its back view showing three 
pairs of clips spaced 120° apart such that the 6 clips form 
a circle of diameter

 
Dclip .  Figure 1C is an enlarged view 

of the pair of clips at the 4 o’clock position. The clips are 
cantilevers fixed at a post. Figure 1D shows the wheel 
rim with a circumferential ledge, shown in white, onto 
which the hubcap snapped on. The diameter of the ledge 



 

 Drim is smaller than the clip diameter 
 
Dclip . As the 

hubcap is snapped on to the rim, the ledge catches the 
cantilever clips. Wheel retention force is developed via 
interference fit = kδ; where k is the spring rate of the 
cantilever and δ is the interference =

 
(Dclip − Drim ) 2  

 

(A) Hubcap front                            (B) Hubcap back 
   

(C) Cantilever clips                           (D) Wheel rim 
 
Fig. 1. Attachment of hubcap to wheel rim 
 
There are two FRs for the hubcap design. 

FR1 = retain hubcap on cornering and over road    
bumps, the larger the retention force the better; 

FR2 = make hubcap removal easier during flat tire 
repair, the smaller the retention force the better. 
Because the two FRs are opposing, the larger the better 
versus the smaller the better, it is crucial that the design 
solution adopted can satisfy both FRs independent of 
each other. If not, there would be conflict. In the above 
design, the solution adopted is interference fit.  So that 
both FRs are a function of the same variables (k, δ): 

 
FR1 = FR2 = kδ. 

 
The two FRs are functionally inter-dependent which we 
confirm by checking if | J | = 0:  
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J = δ k

δ k
= δk − δk = 0.

 
This confirms the design violates Independence Axiom.  

To recap, although we set out to define two 
functionally independent FRs, the solution we choose –
interference fit – does not fulfill the intention. It induces 
conflict between them. Any attempt to satisfy one FR 
invariably dissatisfies the other. Simply put: one DP, 
interference fit, cannot satisfy two FRs, retention and 
removal. The consequence was 25% of hubcaps fell off 
as the car corners or hits bumps and potholes.  And some 
customers complained about the difficulty in removing 
the hubcap for a flat tire repair. 

Back in 1986, we had to resort to a compromised 
target value of FR = 32N; and reduce variability around 
it via robust design optimization as follows, see [4]. 

 
Define a (compromised) target: 

 
FRtarget ; 

 
Identify “noise”, the source of variability:  δ; 
 
Minimize ∂FR/∂δ (=k) sensitivity to noise:  k→ small; 
 
Subject to the constraint that:  kδ =

 
FRtarget . 

 
The results of the optimization are shown in Figure 2. 
The solution was a compromise. It had limited success 
because the performance of an ill-conceived design 
cannot be improved via subsequent optimization.   
 

 
 
Fig. 2. Customer dissatisfaction versus retention force 
 
In the next case study, we show that the same mistake 
was committed – coupling of opposing FRs. We further 
show how to resolve the coupling thereby avoid conflict. 
 
3.2 Ignition switch – resolving coupling in FRs 
 
In the beginning 2001-2002, some Saturn Ion ignition 
switches exhibited low torque during production testing. 
From mid-2004 thru late 2005, some Chevy Cobalt and 
Saturn Ion were reported to "inadvertently turn off" the 
ignition switches while in motion.  From 2006 thru 2014, 
a series of investigations were undertaken to address the 
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problem including a secret redesign in 2006. The 
activities culminated with a massive recall in early 2014. 
For details and timeline of the events, see [5].  
     The primary issue was the unintended shifting out of 
the “Run” position that caused the engine to stall, 
knocking out airbags, power steering, and brakes. We 
describe below the configuration of the ignition switch, 
the physics that govern its operation and the flaw 
inherent in the design. 
     Figure 3 shows a photo of an ignition switch 
assembly. On one end of the assembly is the ignition 
switch and on the other end, the ignition key.   

 

 
 
Fig. 3. Ignition switch assembly 
 

Figure 4 shows the top view of the ignition switch.  
The ignition key rotates the ignition switch by means of 
a shaft through the slot shown. 
 

 
 
Fig. 4. Top view of ignition switch      Fig. 5. The key positions 

 
Figure 5 shows the ignition key in the key cylinder at 

“Acc”, the accessory position. With the key at this 
position, the engine is off. Another position of interest is 
the “Run” position at which the engine is on.   In a key 
with wide slot, the weight of the keychain is at an offset 
to one side. The offset provides leverage for the weight 
of the keychain to produce a torque that tends to shift the 
key from Run to Acc thereby stalling the engine.  

Figure 6 shows the components inside the ignition 
switch: the spring-loaded plunger and the switch disc 
with détentes. Note that the cam profile comprising the 
two détentes is symmetrical about line A-A equidistant 
from the two detente positions. For details, see [6].  

 

 
 
Fig. 6. Components inside the Ignition switch 

 
When the ignition key is turned, it rotates the switch 

disc inside the ignition switch. As the switch disc with 
the détentes rotates and glides over the spring-loaded 
plunger, the plunger retracts out of the Run (Acc) détente 
and extends into the Acc (Run) detente to hold the switch 
in Acc (Run) position.   

The FRs for the ignition switch are: 
 
FR1:   Prevent unintended shifting from Run to Acc; 
           the larger the resistance to shifting the better. 
FR2:   Make the shifting from Acc to Run easy; 
           the smaller the resistance to shifting the better. 
 
Like the hubcap design, the two FRs are opposing. If 

the design cannot independently satisfy the two FRs, we 
once again would end up with conflict and compromise.  

The resistance to shifting from one détente position to 
another is proportional to the energy needed to retract the 
plunger from one detente and extend it into the other. 
This energy may be derived as follows. 

 Referring to Figure 7, the cam profile that glides over 
the plunger is an inverted peak with two valleys. At one 
valley, the Run position, the plunger is deflected by an 
amount δ. The associated energy stored is kδ2/2.  As the 
cam glides over the plunger and the plunger retracts out 
of the détente to reach the “peak”, the plunger is 
deflected by an amount Δ . The associated stored energy 
is kΔ2/2. Thus, the energy “hump” to surmount the 
“peak” is .  

 
 
Fig. 7. Energy stored at various plunger positions, Run to Acc. 
 
Since the cam profile is symmetric about the “peak” 
position, line A-A in Figure 6, the energy hump to 
surmount from Run to Acc is the same as that from Acc  

 
k ⋅ Δ2 − δ2( ) / 2



 

to Run, see Figure 8 below. Namely, 
 

 

Energy hump
Run→ Acc

⎡

⎣
⎢

⎤

⎦
⎥ =

Energy hump
Run ← Acc

⎡

⎣
⎢

⎤

⎦
⎥ =

k Δ2 − δ2( )
2  

 

 
 
Fig. 8. Energy stored at various plunger positions, Acc to Run. 
 
Given that resistance to shifting from Run (Acc) to Acc 
(Run) is proportional to energy hump to surmount, it 
follows that: 

 
FR1 = FR2 =

k(Δ2 − δ2 )
2

.
 

Thus the two FRs are functionally dependent on the 
same set of variables. Since FR1 and FR2 are opposing, 
the design cannot satisfy one FR without dissatisfying 
the other.  This is the fundamental flaw of the design.  
To confirm functional dependency, we check if | J | = 0:
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                 (5)

 
 

 

J⎡⎣ ⎤⎦ =
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The three Jacobian determinants | J | that can be formed 
from two out of three columns in the [ J ] matrix above 
are all equal to zero. 

 

(Δ2 − δ2 )
2

kΔ

(Δ2 − δ2 )
2

kΔ
=

(Δ2 − δ2 )
2

− kδ

(Δ2 − δ2 )
2

− kδ
= k

Δ − δ
Δ − δ

= 0  

 
Therefore the two FRs are functionally interdependent. 

In view of the functional dependency discussed, we 
now review the fixes that were made in the past.  In 
2006, there was a secret redesign involving changes in 
the plunger length – the free height – and spring 
stiffness, see Figure 9A. The changes increase the torque 
resistance to shift from Run to Acc, a desirable safety 
feature. Due to coupling, however, the changes also 
increase the torque resistance from Acc to Run, an 
undesirable customer satisfaction outcome.  This 
coupling is indicated in Equation (5) in which any 
change in free height and spring stiffness, i.e., (δ, Δ, k), 
to affect one FR invariably affect the other FR as well.  
In other words, the secret redesign did not address the 
fundamental flaw: the coupling of the two opposing FRs. 
 

 
(A) Plunger redesigned                                    (B) Slot converted to hole 

  
Fig. 9. Fixes for the defective ignition switch  
 
 

Another remedy undertaken, which formed part of 
the recall effort, was to make the wide slot in the original 
key into a small hole; see figure 9B. This modification 
reduces the leverage for heavy key chains to rotate the 
key out of the Run position. The remedy is a good 
temporary fix.  It reduces the potential torque input that 
rotates the key out of Run position. However, it still did 
not address the fundamental flaw of the functional 
coupling of the two opposing FRs.   

As an illustration to removing the design fundamental 
flaw, one solution – albeit not the only one – is a cam 
profile shown in Figure 10.  With this profile, the torque 
to shift the key out of Run position will be higher than 
the torque to shift out of Acc position. 

 
 

 
 
Fig. 10. A cam profile for generating unequal energy humps 
 



 

The FRs associated with the proposed cam profile are: 
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The Jacobian matrix is: 
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All six Jacobian determinants | J | that can be formed 
from two out of four columns in the [ J ] matrix above 
are not equal to zero. 
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Thus the two opposing FRs are functionally independent 
of each other. They can be simultaneously satisfied 
without conflict and compromise. 
 

4 Concluding remarks 
 
The | J | criterion substantiates the Independence Axiom. 
It provides a formidable proof that non-compliance with 
the axiom will impede a design from fulfilling its 
functional requirements.  

A design mistake, the hubcap, identified but not 
taught will reappear, as in the ignition switch, until the 
lesson is learned. The | J | criterion can serve as the 
mathematical basis for teaching and implementing 
Independence Axiom in design so that design mistakes 
need not be learned again and again.  
 
5 Disclosures 
 
The author was a member of a team that worked on the 
hubcap design. He was not involved in any way in the 
recall of the ignition switch.  He was therefore not privy 
to information and data that went into the analyses and 
redesign for the recall. All the analyses and conclusions 
drawn by the author about the ignition switch herein 
were based on publicly available information and data. 
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